MATHEMATICS -(041)
Class IX - 2019-2020
MAX. MARKS : 80

SECTION -A

1) Degree of the polynomial $4 x^{4}+0 x^{3}+0 x^{5}+5 x+7$ is
$\begin{array}{ll}\text { (A) } 4 & \text { (B) } 5\end{array}$
(C) 3
(D) 7
2) The perpendicular distance of the point $P(6,-8)$ from the y-axis is
(A) 10
(B) -8
(C) 6
(D) 8
3) In figure, If $O P\left|\mid R S, \angle O P Q=110^{\circ}\right.$ and $\angle Q R S=130^{\circ}$, then $\angle P Q R$ is equal to
(A) 40°
(B) 50°
(C) 60°
(D) 70°

4) In figure, $\angle A O B=90^{\circ}$ and $\angle A B C=30^{\circ}$, then $\angle C A O$ is equal to: $\begin{array}{llll}\text { (A) } 30^{\circ} & \text { (B) } 45^{\circ} & \text { (C) } 90^{\circ}\end{array}$ 60°
5) The sides of a triangle are $35 \mathrm{~cm}, 54 \mathrm{~cm}$ and 61 cm , respectively. The length of its longest altitude
(A) $16 \sqrt{5} \mathrm{~cm}$
(B) $10 \sqrt{5} \mathrm{~cm}$
(C) $24 \sqrt{5} \mathrm{~cm}$
(D) 28 cm
6) The radii of two cylinders are in the ratio of $2: 3$ and their heights are in the ratio of $5: 3$. The ratio of their volumes
is:
(A) $10: 17$
(B) $20: 27$
(C) $17: 27$
(D) $20: 37$
OR

The total surface area of a cone whose radius is $\frac{\mathrm{r}}{2}$ and slant height $2 l$ is
(A) $2 \pi r(1+r)$
(B) $\pi r\left(1+\frac{r}{4}\right)$
(C) $\pi r(I+r)$
(D) $2 \pi r l$
7) In a frequency distribution, the mid value of a class is 10 and the width of the class is 6 . The lower limit of the class is :
(A) 6
(B) 7
(C) 8
(D) 12

OR
The width of each of five continuous classes in a frequency distribution is 5 and the lower class-limit of the lowest class is 10 . The upper class-limit of the highest class is:
(A) 15
(B) 25
(C) 35
(D) 40
8) The mean of 25 observations is 36 . Out of these observations if the mean of first 13 observations is 32 and that of the last 13 observations is 40 , the 13 th observation is :
(A) 23
(B) 36
(C) 38
(D) 40
9) Two coins are tossed 1000 times and the outcomes are recorded as below :

No. of Heads	2	1	0
Frequency	200	550	250

Based on this information, the probability for at most one tail is
(A) $\frac{1}{5}$
(B) $\frac{1}{4}$
(C) $\frac{4}{5}$
(D) $\frac{3}{4}$
10) In $\triangle P Q R, \angle P=70^{\circ}, \angle R=30^{\circ}$, Then:
(A) $P Q>P R$
(B) $P Q>Q R$
(C) $Q R>P R$
(D) $P R>P Q$
11) Give the equations of two lines passing through $(2,14)$. How many more such lines are there, and why?
12) Express 0.2353535 \qquad in form of $\frac{p}{q}$.
13) Write rational \& irrational number between $\sqrt{2} \& \sqrt{3}$.
14) Check whether the polynomial $q(t)=4 t^{3}+4 t^{2}-t-1$ is a multiple of $2 t+1$.
15) Prove that there is only one mid point of a line segment.
16) The observations $29,32,48,50, x, x+2,72,78,84,95$ have been arranged in ascending order. If the median of the data is 63 , find the value of x.
17) In figure, $\angle P Q R=100^{\circ}$, where P, Q and R are points on a circle with centre O. Find $\angle O P R$.

18) Which is greater: $\sqrt[3]{16}$ or $\sqrt[5]{8}$? OR If $x=3+2 \sqrt{2}$, Find whether $x+\frac{1}{x}$ is rational or irrational
19) Locate $\sqrt{10}$ on number line.
20) Find the coordinate of point lie on y axis at distance 4 units from origin .

Find the points where the graph of the linear equation $2 x+3 y=6$ cuts the y-axis .

SECTION - B

21) Factorise: $\mathrm{x}^{3}+13 \mathrm{x}^{2}+32 \mathrm{x}+20 \quad$ OR $\quad 2 \sqrt{2} \mathrm{a}^{3}+8 \mathrm{~b}^{3}-27 \mathrm{c}^{3}+18 \sqrt{2} \mathrm{abc}$.
22) The parking charges of a car in a parking lot are Rs 20 for the first hour \& Rs 10 for the subsequent hours. Taking total parking time to be x hours \& total charges as Rs y, write a linear equation in two variables to express the above statements.
23) A closed cylindrical petrol storage tank that is 4.2 m in diameter and 4.5 m high. How much steel was actually used, if $\frac{1}{12}$ th of the steel actually used was wasted in making the tank.
OR
A metal pipe is 77 cm long. The inner diameter of a cross section is 4 cm , the outer diameter being 4.4 cm . Find its total surface area.
24) $P O Q$ is a line. Ray $O R$ is perpendicular to line $P Q$. OS is another ray lying between rays OP \& OR. Prove that

$$
\left\llcorner R O S=\frac{1}{2}(\llcorner Q O S-\llcorner P O S) .\right.
$$

25) $A B C D$ is a trapezium with $A B$ || $D C$. A line parallel to $A C$ intersects $A B$ at X and $B C$ at Y. Prove that ar $(A D X)=\operatorname{ar}(A C Y)$.
26) Bisectors of angles interior angles B and C of a triangle $A B C$ intersect each other at the point O. Prove that $\angle B O C=90^{\circ}+\frac{1}{2} \angle A$.
Section - C
27) Two solid spheres made of the same metal have weights 5920 g and 740 g , respectively. Determine the radius of the larger sphere, if the diameter of the smaller one is 5 cm .
28) State \& Prove Mid Point Theorem . OR
In a parallelogram $A B C D, E$ and F are the mid-points of sides $A B$ and $C D$ respectively (Fig.). Show that the line segments AF and EC trisect the diagonal BD.
29) Prove that isosceles trapezium is cyclic OR
If two equal chords of a circle intersect within the circle, prove that the segments of one chord are equal to corresponding segments of the other chord.
30) Draw the Histogram for the data :

Age (years)	$1-2$	$2-3$	$3-5$	$5-7$	$7-10$	$10-15$	$15-17$
children	5	3	6	12	9	10	4

31) Construct a triangle $A B C$, in which $\angle B=60^{\circ}, \angle C=45^{\circ}$ and $A B+B C+C A=11 \mathrm{~cm}$.
32) Given that $p x^{2}+q x+6$ leaves the remainder 1 on division by $(2 x+1) \& 2 q x^{2}+6 x+p$ leaves the remainder 2 on division by $(3 x-1)$. Find $p \& q$.
The polynomials $a x^{3}-3 x^{2}+2 x-3$ and $a x^{2}-5 x+a$ when divided by $x-2$ leave remainders
of p and q respectively. Find the value of a if $p=3 q$. Hence find value of $p \& q$.
33) The triangular side walls of a flyover have been used for advertisements. The sides of the walls are 13 $\mathrm{m}, 14 \mathrm{~m}$ and 15 m . The advertisements yield an earning of Rs 2000 per m^{2} a year. A company hired one of its walls for 6 months. How much rent did it pay? OR
Students of a school staged a rally for cleanliness campaign. They walked through the lanes in two groups. One group walked through the lanes $A B, B C$ and $C A$; while the other through $A C, C D$ and $D A$ (see Fig. 12.12). Then they cleaned the area enclosed within their lanes. If $A B=9 m, B C=40 m, C D=15$ $m, D A=28 \mathrm{~m}$ and $\angle B=90 \circ$, which group cleaned more area and by how much? Find the total area cleaned by the students (neglecting the width of the lane.
34) Find the values of $\mathrm{a} \& \mathrm{~b}$: Find value of $\mathrm{a} \& \mathrm{~b}$ if,$\frac{(7+\sqrt{5})}{(7-\sqrt{5})}-\frac{(7-\sqrt{5})}{(7+\sqrt{5})}=\mathrm{a}+\frac{7}{11} \sqrt{5} \mathrm{~b}$.

OR

$$
\text { Simplify } \frac{6}{2 \sqrt{3}-\sqrt{6}}+\frac{\sqrt{6}}{\sqrt{3}+\sqrt{2}}-\frac{4 \sqrt{3}}{\sqrt{6}-\sqrt{2}} .
$$

Section-D

35) A dome of a building is in the form of a hemisphere. From inside, it was white-washed at the cost of ₹ 498.96 . If the cost of white-washing is ₹2.00 per square metre, find the (i) inside surface area of the dome, (ii) volume of the air inside the dome.
36) In fig.Diagonals $A C$ \& $B D$ of a quadrilateral $A B C D$ intersect at O such that $O B=O D$. If $A B=C D$, Show that: a) $\operatorname{Ar}(\triangle A O B)=\operatorname{Ar}(\triangle D O C) \quad$ b) $\operatorname{Ar}(\triangle A C B)=\operatorname{Ar}(\triangle D C B) \quad$ c) $A B C D$ is a llgm.

OR
$A B C D$ is a trapezium in which $A B \| D C, D C=30 \mathrm{~cm}$ and $A B=50 \mathrm{~cm}$. If X and Y are, respectively the midpoints of $A D$ and $B C$, prove that $\operatorname{ar}(D C Y X)=\frac{7}{9}$ ar (XYBA).
37) i)If $P R>P Q \& P S$ bisects $\angle Q P R$ in triangle PQR. Prove that $\angle P S R>\angle P S Q$. Also Prove that $\angle P S R>90^{\circ}$. ii) In right angled triangle, Prove that line segment joining the mid points of the hypotenuse to opposite vertex is half the hypotenuse .

38) If two chords $A B$ and $C D$ of a circle AYDZBWCX intersect at right angle), prove that arc $C X A+\operatorname{arc} D Z B=$ $\operatorname{arc} \mathrm{AYD}+\operatorname{arc} \mathrm{BWC}=$ semicircle.

OR
Three girls Reshma, Salma and Mandip are playing a game by standing on a circle of radius 5 m drawn in a park. Reshma throws a ball to Salma, Salma to Mandip, Mandip to Reshma. If the distance between Reshma and Salma and between Salma and Mandip is 6 m each, what is the distance between Reshma and Mandip?
39) Prove that the quadrilateral formed by the bisectors of the angles of a parallelogram is a rectangle .
40) If $\frac{9^{n} \times 3^{2} \times 3^{(-n / 2)^{-2}}-27^{n}}{3^{3 \mathrm{~m}} \times 2^{3}}=\frac{1}{27}$, Prove that $\mathrm{m}-\mathrm{n}=1$.

